About big data and digital neo-positivism in history research

Authors

  • Tiago Luís Gil University of Brasilia. Brasilia, Brazil

DOI:

https://doi.org/10.6092/issn.2532-8816/20365

Keywords:

big data, Neopositivism, digital history, digital tools, digital historical sources

Abstract

The paper discusses the progress of digital initiatives in historical research, highlighting in particular the increase in the number of large repositories and online archival collections. This scenario is seen as part of a growing attention to big data that has to be discussed in the disciplinary community. Some cases (such as Transkribus and Time Machine)  with a strong empiricist approach seem to prefigure a sort of irrelevance of the historical method through the emphasis given to disintermediation. The article hopes to provide ideas for the debate, indicating digital training as the essential condition to orient historians in the face of a sea of ​​uncertainties and algorithms.

References

Articolo già uscito in portoghese, Sobre big data e neo-positivismo digital na pesquisa em história, sulla rivista e-A Almanack (36, 2024) https://doi.org/10.1590/2236-463336ep00124, tradotto da Tiago Luís Gil con la collaborazione di Enrica Salvatori.

Anderson, Chris. 2008. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, [s. l.]. Disponível em: https://www.wired.com/2008/06/pb-theory/. Acesso em: 14 mar. 2024.

Azoulay, Benjamin; Courson, Benoît De. 2021. Gallicagram: un outil de lexicométrie pour la recherche. SocArXiv, [s. l.], 8 dez. 2021. doi: https://doi.org/10.31235/osf.io/84bf3.

Castelvecchi, Davide. 2019. Venice ‘Time Machine’ Project Suspended amid Data Row. Nature, [s. l.], v. 574, n. 7780, 31 out. 2019, p. 607. doi: https://doi.org/10.1038/d41586-019-03240-w.

Courson, Benoît De et al. 2023. Gallicagram : les archives de presse sous les rotatives de la statistique textuelle. Corpus, [s. l.], n. 24, 15 jan. 2023. doi: https://doi.org/10.4000/corpus.7944.

De Certeau, Michel. 1978. A operação histórica. In: Le Goff, Jacques; Nora, Pierre (org.). História: novos problemas. São Paulo: Livraria Francisco Alves Editora.

Ehrmann, Maud et al. 2021. Named Entity Recognition and Classification on Historical Documents: A Survey . arXiv:2109.11406 [cs], 23 set. 2021. Disponível em: http://arxiv.org/abs/2109.11406. Acesso em: 14 mar. 2024.

Ginzburg, Carlo; Prosperi, Adriano. 1975. Giochi di pazienza: un seminario sul Beneficio di Cristo. Vol. 258. Torino: Einaudi.

“Google Books Ngram Viewer”, 2024. https://books.google.com/ngrams/.

Graham, Shawn; Milligan, Ian; Weingart, Scott. 2016. Exploring Big Historical Data: The Historian’s Macroscope. [S. l.]: World Scientific Publishing Company.

Graham, Shawn; Milligan, Ian; Weingart, Scott. 2016. Exploring Big Historical Data: The Historian’s Macroscope. [S. l.]: World Scientific Publishing Company.

Guldi, Jo; Armitage, David. 2014. The history manifesto. Cambridge, United Kingdom: Cambridge University Press.

Homero. 1997. Odisséia Em Versos. São Paulo: Ediouro.

Jemielniak, Dariusz. 2020. Thick big data: doing digital social sciences. New product. New York: Oxford University Press.

Jockers, Matthew Lee. 2013. Macroanalysis: digital methods and literary history. Topics in the digital humanities. Urbana: University of Illinois Press.

Kahle, Philip et al. 2017. Transkribus - A Service Platform for Transcription, Recognition and Retrieval of Historical Documents. In: Iapr International Conference on Document Analysis and Recognition (ICDAR), 14., 2017, Kyoto. Anais […].Kyoto: IEEE, 2017. p. 19-24. https://doi.org/10.1109/ICDAR.2017.307.

Kaplan, Frédéric. 2015. The Venice Time Machine. In: Acm Symposium on Document Engineering, 2015, Lausanne Switzerland. Proceedings […]. Lausanne Switzerland: ACM, 2015. p. 73. doi: https://doi.org/10.1145/2682571.2797071.

Karsdorp, Folgert; Kestemont, Mike; Riddell, Allen. 2021 Humanities data analysis: case studies with Python. Princeton: Princeton University Press, 2021.

Kitchin, Rob. 2014. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society, [s. l.], v. 1, n. 1, 1 abr. 2014. doi: https://doi.org/10.1177/2053951714528481.

Kitchin, Rob. 2006. Positivistic geography and spatial science”. In: Kitchin, Rob. Approaches to human geography. London: Sage. p. 20-29. Disponível em: https://scholar.google.com/citations?view_op=view_citation&hl=pt-PT&user=Y_3-GBQAAAAJ&cstart=200&pagesize=100&sortby=pubdate&citation_for_view=Y_3-GBQAAAAJ:hEXC_dOfxuUC.‬‬ Acesso em: 14 mar. 2024.

Kokensparger, Brian. 2018. Guide to Programming for the Digital Humanities: Lessons for Introductory Python. New York: Springer.

Levallois, Clément. 2018. Nocode Functions, 2024. Disponível em: https://nocodefunctions.com/. Acesso em: 14 mar. 2024.

Levallois, Clement. 2013. Umigon: sentiment analysis for tweets based on lexicons and heuristics. In: International Workshop on Semantic Evaluation, Semeval, 2013, Atlanta. Proceedings […]. Atlanta: [s. l.], 2013. p. 414-417. Disponível em: https://scholar.google.com/scholar?cluster=977413450992752080&hl=en&oi=scholarr. Acesso em: 14 mar. 2024.

Michel, Jean-Baptiste et al. 2011. Quantitative Analysis of Culture Using Millions of Digitized Books. Science, [s. l.], v. 331, n. 6014, p. p. 176-182, 14 jan. 2011. doi: https://doi.org/10.1126/science.1199644.

Ministerio Della Cultura. Archivio di Stato di Venezia. 2019. Sospensione dei rapporti con EPFL su Time Machine, 2019. Disponível em: https://www.archiviodistatovenezia.it/it/eventi/news/sospensione-dei-rapporti-con-epfl-su-time-machine.html. Acesso em: 14 mar. 2024.

Moretti, Franco. 2024. Atlas of the European Novel, 1800-1900. Verso, 1999. Disponível em: https://books.google.com.br/books?id=ja2MUXS_YQUC. Acesso em: 14 mar. 2024.

Moretti, Franco. 2005. Graphs, Maps, Trees: Abstract Models for a Literary History. Verso, 2005. Disponível em: https://books.google.com.br/books?id=YL2kvMIF8hEC. Acesso em: 14 mar. 2024.

Mounier, Pierre. 2018. Les humanités numériques: Une histoire critique. Paris: Éditions de la Maison des sciences de l’homme, 2018. doi: https://doi.org/10.4000/books.editionsmsh.12006.

O’neil, Cathy. 2016. Weapons of math destruction: how big data increases inequality and threatens democracy. 1st. ed. New York: Crown.

Ribeiro, Filipe Nunes et al. 2024. SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods. arXiv, [s. l.], 14 jul. 2016. Disponível em: http://arxiv.org/abs/1512.01818. Acesso em: 14 mar. 2024.

Stauder, Florian. 2023. A Short History of Transkribus with Günter Mühlberger . READ-COOP, 22 fev. 2023. Disponível em: https://readcoop.eu/a-short-history-of-transkribus-with-gunter-muhlberger/. Acesso em: 14 mar. 2024.

Time Machine Europe. 2024. About Us. Disponível em: https://www.timemachine.eu/about-us/. Acesso em: 14 mar. 2024.

Published

2025-01-16

How to Cite

Gil, T. L. (2024). About big data and digital neo-positivism in history research. Umanistica Digitale, 8(18), 237–248. https://doi.org/10.6092/issn.2532-8816/20365

Issue

Section

Translations